SAID FARAH RAYAN

TPC1/TDC/GR3

TP3 : MICROPROCESSOR

EX.1 Structure de base

Structure d’un microprocesseur 4 bit :
Unité de traitement (ALU), unité de mémoire (Register Bank), accumulateur, unité de control, MUX4
1.

Fonctionnement :

Le microprocesseur exécute une suite d’instructions contenues en mémoire. La mémoire contient
d'une part les instructions (le programme), d'autre part des données (par exemple une image ou un
son, ou un fichier texte, a traiter par un programme). L'unité de contréle analyse les instructions une
par une, et pour chacune, indique a I'unité de traitement ce qu'elle doit faire en activant les signaux
de controle adéquats. Les instructions (par exemple une addition) sont exécutées par |'unité de
traitement

Comment sont géneres les signaux de contrble pour exécuter des instructions :
lls sont générés par 'unité de controle, elle envoie des commandes a I'unité de
traitement et de mémoire qui vont exécuter les instructions.

Code :

21 // Declaration of the wariahles of the Micro-processor

22 hool Wr_aCC, I[4], op, Wr_RB, Adr[2], =sel, Clk;

Z3

24 Reg Regl, Regl, RegZ, Regd, ACC; Reg3.Q0]=0;

25 Gutputd ALU4, RE, MUZ; Reg3.Q[1]-0;

26 ADD SUB ADD4, SUB4; - Reg3.Ql2]=0;
— Regd.Q[3]=0;

27 .

28 // Assign output variakles to GPIO pins 17 Reg3.0[0]1=0;

2% zonst int Led_o0 = 26; 88 Reg3.0[1]=0;

: oo Reg3.o[2]=0;

30 const int Led Ol = 27; " rema . o[3) -0

21 const int Led 02 = 14;)

22 zonst int Led 03 = 1Z; ! Acc.Q[0] = 0O:

33 3 Acc.2l1] 0;
. 4 Acc.arz] oz

34 void setup() Acc.@3] = 0;

35 4 Y

36 /7 Initialise the wariables 7 Acc.o[0] = Oy

a7 Wr_acc = 0; 8 Acc.olll = 0y

A Acc.or2] oz

38 I[0]=0; Lan Acc.o(3] = 0;

EE] I[1]=0; 101

40 I[2]=0; 103 outputs

a1 T[3]=0; :‘ X

4z op = 0; 105

43 Wr_RB = 0; Lo

44 ade[0] = 0; L

45 adr[l] = 0O; :::

46 sel =0; 1o

47 Cclk = 0; 111

18 113 =

z40 RE = Register_ bank (&CC. 0, Adr, Clk, Wr_RE);

241 ALU4 = ALU 4 (ACC.O, RB.O, opl;

24Z MUX = MUZZ1l(sel, I, ALU%.0);

z243 ACC = Accumulator (MUX.O, Clk, Wr_ACC);

Z44

45 // LED outputs

zZ4a digitalrite(Led OO0, ACC.O[01);

z47 digitallrite(Led 01, ACC.O[1]1);

Z48 digitalWrite(Led OZ, ACC.O[Z21);

249 digitalWrite(Led 03, ACC.0O[31);

EX.1.4 Programmation :

Expliquer également comment vous procédez cette opération :
Voici comment procéder pour |'opération 7+3-6 :

1. Charger7(011

w N

1) dans I'accumulateur :

m ¢

4-bit Microprocessor

13 12 n 10
El = EX
adrl Adreé Wr (RB) Clk

op (ALU) br (ACC) sel (MUX)

..a1+ ooga
..a1+ ooga
..a1+ oaoa
..a1+ oaoa

D3:83:05.830 ->

[T e —— et e

<« S @ A Non séaurisé 92.168.9. a3 [xi]

Stocker le 7 dans le registre a I'adresse 00 :

4-bit Microprocessor

I3 2 1 10
EEIED
adrl Adre Wr (RB) Clk

I K2

op (ALU) Wr (ACC) sel (MUX)

[T —— JE ST ——— Houwele e

Charger 6 (0110) dans I'accumulateur :

4-bit Microprocessor

13 2 I 10
n n
Adrl Adr@ Wr (RB) Clk

op (ALU) Wr (ACC) sel (MUX)

E2 &1 &2

-]
D9:43:30.887 —» User-Agent: Mozilla/s.0 (Windows NP 10.0; Win6d; x64) ApplewebRit/sy
po:a3:34. pr: rext/nenl, spplication/shenlssml, application/snl; qu0. 9, inage/

09:43:30.082 —> Refersr: heep://192.168.91.211/Ws_Acc/en
po:a3:3a. : grip, deflats

po:a3:34. © fe, fe-PRgeD. 5, enigmD. 3, en-SE;qeD. 7, en-U3;q70. 6
po:a3r3a.
po:a3r3a.
po:a3r3a.
po:a3r3d.
po:a3r3.
po:aar3d. Azcumlatar ——-
po:a3r3d.
09:43:34.517 —» client disconnested
0o:43r34.517 —»

6 8 et ot @ A reroistoge e

. Stocker le 6 dans le registre a I’adresse 01 :

4-bit Microprocessor

13 2 1 10
n n
Adrl Adré Wr (RB) Clk

I 3 1

op (ALU) Wr (ACC) sel (MUX)

3 &2 £

-

9 Usec-Agent; Mozilla/5.0 (Mindows NT 10,0; Win6d; xid) AppleWebliit/sd)
5 Accepts text/hinl, spplication/xhtnltmml, application/mml;q=0. 9, inage/
9: Beferec: http://192.163,91.211/kds0fon

5. Aicipt-Bacodiag €

5. [u——

5.

8, ' Nomrams Mo e ——
9. Charger 3(0011) dans I'accumulateur :
« G fis 53] O
4-bit Microprocessor
n B n m
[= o]
Adrl Adra Wr (RB) Clk
op (ALU) Wr (ACC) sel (MUX)
EX
°

User-agent: Mozilla/S.0 (Mindows NI 10,07 Windd; x64) Applewebrit/sd)

exe/htnl, spplication/shenleml, spplicstion/sml; 4=0. 9, insge/]
Fr//192, 168,91, 211/ ma)/ ot

guip, deflate

fr, fe-PRig=0. 3, enjq=0.6, en-5B}q=0. 7, en-U3; q=0. §

RegO[3..0]: 0111
Regl[3..0]: 0110
Reg2[3..0]: 0000
Reg3[3..0]: 0000
- Aecusulatse -
ace(3..oj: ooi1
Clisnt aisconnscred.

B tierens aumatiue B seter Morodatage ouele e 115200
.

11. Ajouter 7 a I'accumulateur (a partir de I'adresse 00) :

op (ALU) Wr (ACC) sel (MUX)
= &
°

Usmc-Agent: Mozilla/S.0 (Mindcws NI 10,0; Wing%; x6i) AppleMebkit/537,36 (rn]
Accepti textihtnl, application/xhtnlémml, spplication/xml;q=0. %, inage/webp, imag]
Befersr: httpi//192.160.5L.Z11/T(2]/on
Acsept-Enseding: gaip, deflate
Accept-Languags: £r, fe-FRig=0. 9, sniq=. B, en-g8;

Reg0[1..0]3 0111
Regl[1..0]: 0110
Reg2[1..0]

Accl3..0): 1010
Client disconnested.

12 [T — pp— vowers i s < 6
13. Soustraire 6 de I'accumulateur (a partir de I'adresse 01) :
P S A Non séauriss | 192168 r ¢ . /

4-bit Microprocessor

13 bed 1 10
=l [=]
Adrl Adr@ Wr (RB) Clk

2 1 A K

ap (ALU) Wr (ACC) =el (MUX)

User-Agent: Mozilla/5.D (Windows NT 10.0;
on/xhtnl bl
hittp://192.168. 51 211/T(0)/ ot

incoding: geip, detlate

470.5, an; q=0.8, en-0B; 4=0.7, eu-D8; g=0. &

Ascept-Language: fr, te-FR;

Reg0[3..0]: 0111
Regl[3..0]: 0110
Reg2[3..0]: 0000
Regd[3..0]: 0000
o= Ascunmlater ---
Ace[3..01: D100
client dissonnested.

14 [AP —— [Fearvells lrm 115200 bouel
.

TP4 : INSTRUCTIONS

Ex.1.1 Signaux de contrdle :

Comment sont générés les signaux de contréle a partir de ces instructions binaires :
Wr_acc=!b_ 5+b_5*b 4

Wr_acc = IWr_BR

Sel=1b 5
Adr=b 3*b 2
Op=b_ 4

EO=b_3*b_2*b_1*b_0
Code:

1 #include <IFHFL. h=
2 #include <AsyneTCP. b
3 #include <ESPAsyncWebfServer. hs-

4 #include "circulits. h"

5

12 const char* PARAM INPUT = "Instruction®™;
13 char instruction[7];

14

15

1a // Declaration of the wvariables of the Micro-processor
17 bool Wr_AcCC, I[4], op, Wr_RE, adr[Z], sel, Clk;

1s

1% Reg Regl, Regl, RegZ, Regld, ACC;

20 Outputd ALU4, RE, MUX;

21 ADD_SUB ADD4, SUB4;

Z2

23 // Declaration of the wariables for the instructions
24 bool h[&];

25

Za // Assign output variables to GPIO pins

27 const int Led 00 = Z6;

Z8 const int Led Ol 27;

Z9 const int Led 0OZ = 14;

30 const int Led_03 = 1Z;

43
50
51
52
a3
54
55
56
57
58
59
[2]n]
&1
B2
&3
64
3]
13
&7
&8
3=
an

189

191
132
133
134
195
196
137
198
199
200

20z
203
204

206

Ex.1.3 Programmation :

woid

{

AAPIIIILFIIIIAFIIII AP IIII AP III AP III AP

setup ()

/4 Initialise the register wvariahles

/4 Initialise the wvariables
Wr_ACC = 0;

I[0]=0;
I[1]=0;
I[2]=0;
I[3]=0;

op = 0;
Wr_RB = 0O;
aAdr[0] = 0;
Adr[l] = 0;
=el =0;
Clk = 0;
k[0] = 0;
b[1] = 0O;
b[2] = 0O;
b[3] = 0;
b[4] = 0O;
hI51 = nN-:
T[0] = b[O];
T[1] = bI[11:
1[2] = Bl2]:

I[3] = bI3];

// Compléter les signaux de controle
Wr_ACC = Ib[S5]|bI[5]&b[4];

Wr_BB = Wr_Acc;

sel = Lb[5];

adr[0] = If2];

adr[1] = I[3];

op = b[4];

clk = 1;

// Compléter le micropracesseur
RE = Register_hank(acc.0, adr, clk, Wr_RB);
ALU4 = ALU_4(ACC.O, RE.O, op);

MUZ = MUZ21(sel, I, ALU4.0);

A0 = Acounmulator (MUX. O, Clk, Wr_ ACC);

clk = 0;

// Compléter les indicateurs LEDs
digitalurite(Led_o0, ACC.o[0]};
digitalWrite(Led OL, ACC.O[1]);
digitallirite(Led_02, ACC.O[21});
digitslurite(Led_03, acc.ol3]);

Instruction binaire 7+3-6 :

Voici comment procéder pour |'opération 7+3-6 :

1.

Charger 6 (0110) dans I'accumulateur :

Instruction sent: 110110
Return to Instruction Input

1z0
181
13z
133
184
133
18A

> P address: 152.166.91.211
> New instruseion received: 110410

38521, 91L -» Register bank
3 > Reg0[3..0): 0000
> Regl[3..0): 0000
RegZ[3..00: 0000
3t

[T ——" e —

Houeta lge

b[0]
b[1]
b[2]
b[3]
bl4]
b[3]

instruction[5]
instruction([4]
instruction[3]
instruction[Z]
instruction[l]

instruction[0]

48;
48;
48;
48;
48;
48;

Stocker le 6 dans le registre a I'adresse 00 :

Instruction sent: 100000
Return to Instruction Input

B e mrstrne @ 2 Feber terccksa ol ore

Charger 3 (0011) dans I'accumulateur :

v

< a v m =

Instruction sent: 110011
Return to Instruction Input

.03+ Dooo
.03 0000
-0): 0000

oéfiemt st B Mficher heradatige et Igre

Stocker le 3 dans le registre a I'adresse 01 :

N o

Instruction sent: 100100
Return to Instruction Input

Naureie Igne

B cierent ammagn @) fiher Mercdatage

Charger 7 (0111) dans I'accumulateur :

© 0

& A Nonsiarist | 19216831211 m
Instruction sent: 110111
Return to Instruction Input

011
ion received: 110111

110111

10:36:90.322 > Ace

10, [t s @i remsear oot <11
.

11. Ajouter 3 a I'accumulateur :

& C A Nenséaris 68.91.211 m

Instruction sent: 000100
Return to Instruction Input

136130.322 > -

easived: 000100

10:37:08.802 - - Asoumulstor
10137108.802 -» Aee(3..00: 1010

[J I e— —
13. Soustraire 6 a 'accumulateur :
€ C A& Nooséouisi | 1921689121 1

Instruction sent: 010000
Return to Instruction Input

e —— —
.

Instruction binaire 7+3-6+5-2 :
Voici comment procéder pour I'opération 7+3-6+5-2 :

15. Charger 2 (0010) dans I'accumulateur :

192.168.91211

Instruction sent: 110010
Return to Instruction Input

Instruction sent: 100000

Return to Instruction Input

Instruction sent: 110101
Return to Instruction Input

2.736 > co[3..0]: 0101

20 B efilement ausomatique (B0 Affcher Morodatage Hourelle igne

21. Stocker le 5 dans le registre a I'adresse 01 :

24,
25.

26.
27.

€& © & Nonsaurist | 19218831211
Instruction sent; 100100
Return to Instruction Input

heuvete lere

10) dans I'acc

Instruction sent: 110110
Return to Instruction Input

B cerlament ausomatiqe B Affcher Moradatage houvale lige

Stocker le 6 dans le registre a I'adresse 10 :

A Non séourisd | 19216 211 [ui
Instruction sent: 101000
Return to Instruction Input

Charger 3 (0110) dans I'accumulateur :

Pt e

Instruction sent: 110011
Return to Instruction Input

29.

-

l10:43:27.080 -> - Aceumuletar -—-
10:43:27.100 ->
10:43:35.000 ->
10:43155.000 ->
10:43,58.004 -> Tne:
10:43159.004 ->

8 néflement automatiqe (8 aMicher Mrodatage

28

Stocker 3 dans le registre a I'adresse 11 :
5 A Non séeurist | 132 @

Instruction sent: 101100

Return to Instruction [nput

+ 101100

30. B oéfisrment ammateue (B 4Fcher lhorodatage houvele lre
31. Charger 7 (0111) dans I'accumulateur :
Instruction sent: 110111
Return to Instruction Input
3D [a =

33. Ajouter 3 a I'accumulateur :

192,168.91.21

Instruction sent: 001100
Return to Instruction Input

esosived: 001100

t
t
£
a

s aceld

Y — —_—
35. Soustraire 6 a I'accumulateur :
C A Nen séourist m =

Instruction sent: 011000
Return to Instruction Input

EloT e — =

37. Ajouter 5 a I'accumulateur :

« O & Non sécurisé 4216891 2 v=

Instruction sent; 000100
Return to Instruction Input

received: 000100

oon1a0

10:46:09.078

38, [@erawmnns @i oo Vel ke

39. Soustraire 2 a I'accumulateur :

€ O A tensians | 19
Instruction sent: 010000
Return to Instruction Input

received: 010000

010000
0

Neaele iore

Le résultat final (7) devrait maintenant étre dans I’'accumulateur.

	EX.1 Structure de base
	Structure d’un microprocesseur 4 bit :
	Fonctionnement :
	Comment sont génères les signaux de contrôle pour exécuter des instructions :

	EX.1.4 Programmation :
	Expliquer également comment vous procédez cette opération :

	Ex.1.1 Signaux de contrôle :
	Comment sont générés les signaux de contrôle à partir de ces instructions binaires :

	Ex.1.3 Programmation :
	Instruction binaire 7+3-6 :
	Instruction binaire 7+3-6+5-2 :

